Closing Next Wed: HW_3A,3B,3C Exam 1 is next Thurs (4.9, 5.1-5.5, 6.1-6.3) Ch 6: Basic Integral Applications
6.1 Areas Between Curves

Using dx:

Example: Find the area bounded between $y=2 x$ and $y=x^{2}$.

(a) Typical rectangle

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x$

Using dy:

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(y_{i}\right)-g\left(y_{i}\right)\right) \Delta y$

Example: Set up an integral for the area bounded between $x=2 y^{2}$ and $x=y^{3}$ (shown below) using dy .

Summary: The area between curves

Step 1: Draw picture finding all intersections.

Step 2: Choose variable:

- same top/bot throughout \rightarrow choose dx (and label x)
- same right/left throughout \rightarrow Choose dy (and label y)
Get everything in terms of the variable you choose!!! And draw a typical approx. rectangle.

Step 3: Appropriately fill in

$$
\begin{aligned}
& \text { Area }=\int_{a}^{b}(\text { TOP }- \text { BOTTOM }) d x \\
& \text { Area }=\int_{c}^{d}(\text { RIGHT }- \text { LEFT }) d y
\end{aligned}
$$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x=y^{2}$ and
$y=x-2$.

6.2 Finding Volumes Using

Cross-Sectional Slicing

If we can find the general formula, $\mathrm{A}\left(\mathrm{x}_{\mathrm{i}}\right)$, for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx \mathrm{A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$
Total Volume $\approx \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$

This approximation gets better and better with more subdivisions, so
Exact Volume $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$
Volume $=\int_{a}^{b} A(x) d x=$
\int_{a}^{b} "Cross-sectional area formula" $d x$

Volume using cross-sectional slicing

1. Draw region and all intersections. Cut perpendicular to rotation axis.

Label x if it cuts across the x-axis (and y if y-axis). Label everything in terms this variable.
2. Formula for cross-sectional area?

```
disc: Area = }\pi(\mathrm{ (radius)}\mp@subsup{}{}{2
washer: Area = }\pi(\mathrm{ outer)}\mp@subsup{)}{}{2}-\pi(\mathrm{ inner )
square: Area = (Height)(Length)
triangle: Area = 1⁄2 (Height)(Length)
```

3. Integrate the area formula.

Example: Consider the region, R, bounded by $y=\sqrt{x}, y=0$, and $x=1$. Find the volume of the solid obtained by rotating R about the \mathbf{x}-axis.

(b)

Example: Consider the region, R , bounded by $y=\sqrt{x}, \mathrm{y}=0$, and $\mathrm{x}=1$. Find the volume of the solid obtained by rotating R about the \boldsymbol{y}-axis.

Example: Consider the region, R, bounded by $y=x$ and $y=x^{4}$.
Find the volume of the solid obtained by rotating R about the \mathbf{x}-axis.

Example: Consider the region, R, bounded by $y=x$ and $y=x^{4}$. (R is the same as the last example).
(a) Now rotate about the horizontal line $y=-5$. What changes?
(b) Now rotate about the horizontal line $y=10$. What changes?

Example:

Consider the region bounded by

$$
4 x=y^{2} \text { and } y=2 x^{3} .
$$

Find the volume of the solid obtained by rotating this region about the y-axis.

Visuals of the last example (created by one of my Math 125 student in the fall of 2017)

Example:

(From an old final and homework)
Find the volume of the solid shown.
The cross-sections are squares.

Summary (Cross-sectional slicing):

1. Draw Label
2. Cross-sectional area?
3. Integrate area.

This method has a major limitation:
6.2 method about x-axis, must use $d x$.
6.2 method about y-axis, must use $d y$.

What if the regions is rotated about the x-axis and we need to use $d y$? (or about y-axis and we need dx?) In these cases, 6.2 "Cross-sectional slicing" wouldn't work!

We need another method.
That is what we will do in 6.3.

