

 Δx

 $f(x_i^*) - g(x_i^*)$

 X_i^{τ}

X

b

S

Y♠

0

а

y = g(x)

0

a

0 a

b x

 $f(x_i^*)$

 $-g(x_i^*)$

Using dy:

Area = $\lim_{n \to \infty} \sum_{i=1}^{n} (f(y_i) - g(y_i)) \Delta y$

Example: Set up an integral for the area bounded between $x = 2y^2$ and $x = y^3$ (shown below) using dy.

Summary: The area between curves

Step 1: Draw picture finding all intersections.

Step 2: Choose variable:

- same top/bot throughout
 →choose dx (and label x)
- same right/left throughout
 →Choose dy (and label y)
 Get *everything* in terms of the
 variable you choose!!! And draw a
 typical approx. rectangle.

Step 3: Appropriately fill in
Area =
$$\int_{a}^{b} (TOP - BOTTOM) dx$$

Area = $\int_{c}^{d} (RIGHT - LEFT) dy$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x = y^2$ and y = x - 2.

If we can find the general formula, A(x_i), for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx A(x_i) \Delta x$

Total Volume
$$\approx \sum_{i=1}^{n} A(x_i) \Delta x$$

This approximation gets better and better with more subdivisions, so Exact Volume = $\lim_{n\to\infty} \sum_{i=1}^{n} A(x_i) \Delta x$ Volume = $\int_{a}^{b} A(x) dx =$ $\int_{a}^{b} \int_{a}^{b}$ "Cross-sectional area formula" dx

- Volume using cross-sectional slicing
- Draw region and all intersections.
 Cut **perpendicular** to rotation axis.

Label x if it cuts across the x-axis (and y if y-axis). Label **everything** in terms this variable.

2. Formula for cross-sectional area? disc: Area = π (radius)² washer: Area = π (outer)² - π (inner)² square: Area = (Height)(Length) triangle: Area = ½ (Height)(Length)

3. Integrate the area formula.

Example: Consider the region, *R*, bounded by $y = \sqrt{x}$, y = 0, and x = 1. Find the volume of the solid obtained by rotating R about the **x-axis**.

Example: Consider the region, R, bounded by $y = \sqrt{x}$, y = 0, and x = 1. Find the volume of the solid obtained by rotating R about the **y-axis**. *Example*: Consider the region, R, bounded by y = x and $y = x^4$. Find the volume of the solid obtained by rotating R about the **x-axis**.

Example: Consider the region, R, bounded by y = x and $y = x^4$. (R is the same as the last example).

(a) Now rotate about the horizontal line y = -5. What changes?

(b) Now rotate about the horizontal line y = 10. What changes? Example:

Consider the region bounded by

 $4x = y^2$ and $y = 2x^3$.

Find the volume of the solid obtained by rotating this region about the y-axis. Visuals of the last example (created by one of my Math 125 student in the fall of 2017)

Example:

(From an old final and homework) Find the volume of the solid shown. The cross-sections are squares.

Summary (Cross-sectional slicing):

- 1. Draw Label
- 2. Cross-sectional area?
- 3. Integrate area.

This method has a major limitation:

6.2 method about *x-axis*, must use *dx*.6.2 method about *y-axis*, must use *dy*.

What if the regions is rotated about the *x*-axis and we need to use *dy*? (or about *y*-axis and we need dx?) In these cases, 6.2 "Cross-sectional slicing" wouldn't work!

We need another method. That is what we will do in 6.3.